sinA+sinB=1/4,cosA+cosB=1/3,求cos(A-B)的值和sin(A+B)的值
展开全部
cos(A-B)=cosAcosB+sinAsinB
(sinA+sinB)^2+(cosA+cosB)^2=sin^2A+2sinAsinB+sin^2B+cos^2A+2cosAcosB+cos^B=2+2cos(A-B)=1/9+1/16
cos(A-B)=-263/288
(sinA+sinB)(cosA+cosB)=sinAcosA+sinBcosB+sinAcosB+cosAsinB=cos(A-B)+sin(A+B)=1/12
sin(A+B)=287/288
(sinA+sinB)^2+(cosA+cosB)^2=sin^2A+2sinAsinB+sin^2B+cos^2A+2cosAcosB+cos^B=2+2cos(A-B)=1/9+1/16
cos(A-B)=-263/288
(sinA+sinB)(cosA+cosB)=sinAcosA+sinBcosB+sinAcosB+cosAsinB=cos(A-B)+sin(A+B)=1/12
sin(A+B)=287/288
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询