复合函数的定义域,值域,单调区间 20
展开全部
复合函数 定义 设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数(composite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。 生成条件 不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。 定义域 若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是 D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。 求函数的定义域的主要考虑以下几点: ⑴当为整式或奇次根式时,R; ⑵当为偶次根式时,被开方数不小于0(即≥0); ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0; ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。 ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。 ⑹分段函数的定义域是各段上自变量的取值集合的并集。 ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求 ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。 ⑼对数函数的真数必须大于零,底数大于零且不等于1。 ⑽三角函数中的切割函数要注意对角变量的限制。 增减性 依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减” 判断复合函数的单调性的步骤如下:⑴求复合函数定义域; ⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); ⑶判断每个常见函数的单调性; ⑷将中间变量的取值范围转化为自变量的取值范围; ⑸求出复合函数的单调性。 求导 复合函数求导的前提:复合函数本身及所含函数都可导 法则1:设u=g(x) f'(x)=f'(u)*g'(x) 法则2:设u=g(x),a=p(u) f'(x)=f'(a)*p'(u)*g'(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询