设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为

设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为A.0B.12C.14D.16... 设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为
A.0 B.12 C.14 D.16
展开
Billnpc
2008-02-15 · TA获得超过498个赞
知道答主
回答量:260
采纳率:0%
帮助的人:235万
展开全部
答案是14 f(2+x)=f(2-x) 所以涵数的根是关于x=2对称的(涵数奇偶均可),7个根则是有一个就为2,其余两两对称,且和均为4,(6/2)*4+2=14 嘿嘿 明白了不?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式