反常积分的问题dx/(e^(x+1)+e^(3-x))求其1到正无穷大的反常积分

就是这个积分,答案是上下同除e^(3-x)得出的结果是(π/4)e^(-2)我做的时候是上下同时除以e^(x+1)得出的结果却是(3π/4)*e^(-2)为什么会不一样啊... 就是这个积分,答案是上下同除e^(3-x)得出的结果是(π/4)e^(-2)我做的时候是上下同时除以e^(x+1)得出的结果却是(3π/4)*e^(-2)为什么会不一样啊 展开
百度网友49fac48
2012-08-06 · TA获得超过722个赞
知道小有建树答主
回答量:87
采纳率:100%
帮助的人:43.1万
展开全部
上下同时除以e^(x+1):
原是=∫ [e^(-x-1)]/[e^(2-2x)+1] dx = e^(-2) ∫ [e^(1-x)]/[e^(2-2x)+1] dx
= - e^(-2) ∫ 1/[e^(2-2x)+1] d e^(1-x)
= - e^(-2) arctan[e^(1-x)] | 1--> +无穷大
= - e^(-2) (arctan0 - arctan1)
= - e^(-2) (0 - π/4)
= (π/4)e^(-2)

计算要认真,骚年
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式