若cos(a+π/4)=3/5,且a∈[π/2,3/2π],那么cos(2a+π/4)=具体过程谢谢 20
1个回答
展开全部
因为cos(a+π/4)=3/5>0,a∈ [π/2,3π/2]
a+π/4∈ [3π/2,7π/4],
所以a∈ [5π/4,3π/2]
cos(2a+π/2)=2[cos(a+π/4)]^2-1=-7/25
a∈ [5π/4,3π/2]
2a+π/2∈ [3π,7π/2]
sin(2a+π/2)=-24/25
cos(2a+π/4)=cos(2a+π/2-π/4)
=cos(2a+π/2)cosπ/4+sin(2a+π/2)sinπ/4
=(-7/25-24/25)(根号2)2
=-31倍(根号2)/50
a+π/4∈ [3π/2,7π/4],
所以a∈ [5π/4,3π/2]
cos(2a+π/2)=2[cos(a+π/4)]^2-1=-7/25
a∈ [5π/4,3π/2]
2a+π/2∈ [3π,7π/2]
sin(2a+π/2)=-24/25
cos(2a+π/4)=cos(2a+π/2-π/4)
=cos(2a+π/2)cosπ/4+sin(2a+π/2)sinπ/4
=(-7/25-24/25)(根号2)2
=-31倍(根号2)/50
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询