![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
判断函数f(x)=x+1(x>0);1(x=0);-x+1(x<0)的奇偶性,并加以证明
2个回答
展开全部
x>0时,f(x)=x+1, -x<0 , f(-x)=-(-x)+1=x+1
∴f(-x)=f(x)
x<0时,f(x)=-x+1,-x>0, f(-x)=-x+1
∴f(-x)=f(x)
x=0时,f(-x)=f(x)=0
综上对任意的实数x,总有f(-x)=f(x)
∴f(x)是偶函数
∴f(-x)=f(x)
x<0时,f(x)=-x+1,-x>0, f(-x)=-x+1
∴f(-x)=f(x)
x=0时,f(-x)=f(x)=0
综上对任意的实数x,总有f(-x)=f(x)
∴f(x)是偶函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询