高中数学必修二空间几何体的体积与面积的全部公式
空间几何体的体积与面积的全部公式:
1、圆柱体(R为圆柱体上下底圆半径,h为圆柱体高)
S=2πR²+2πRh
V=πR²h
2、圆锥体(r为圆锥体低圆半径,h为其高)
S=πR²+πR[(h²+R²)的平方根]
V=πR²h/3
3、正方体(a为边长)
S=6a²
V=a³
4、长方体(a为长,b为宽,c为高)
S=2(ab+ac+bc)
V=abc
5、棱柱(S为底面积,h为高)
V=Sh
6、棱锥(S为底面积,h为高)
V=Sh/3
7、棱台(S1和S2分别为上、下底面积,h为高)
V=h[S1+S2+(S1S2)^1/2]/3
8、圆柱(r为底半径,h为高,C为底面周长,S底为底面积,S侧为侧面积,S表为表面积)
C=2πr,S底=πr²,S侧=Ch
S表=Ch+2S底
V=S底h=πr²h
9、圆台(r为上底半径 ,R为下底半径 ,h为高)
S= πR²+πrl+πRl+πr²
V=πh(R²+Rr+r²)/3
10、球 (r为半径,d为直径)
S=4πr²
V=4/3πr^3=πd^3/6
扩展资料:
巧记空间几何体中的面积和体积公式的方法:
1. 面积问题:
空间几何体的面积主要分为两类:侧面积和表面积,其中的重点是旋转体的侧面积公式。
对于多面体的面积,其各个面都是多边形,这个在小学阶段就研究过了。其中,只需要记住圆台的侧面积公式就够了。将圆台侧面打开,是一个扇环,很像一个梯形。所以圆台的侧面积就按照梯形来进行计算,就很容易理解。
如下图所示:
对于圆柱和圆锥的侧面积公式,不需要单独去记忆,只需要将其看成一个特殊的圆台就行了。圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:
按照上面的思路,把柱体和椎体看成一个特殊的台体,因此也只需要记住一个台体的体积公式就可以啦。
3. 球的表面积和体积:
关于球的表面积和体积公式,比较好记,死记就可以了。
所以综合下来,也只有四个公式需要记忆,圆台的侧面积公式、体积公式,以及球的侧面积公式和体积公式。
表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a² ,V=a³
4、长方体
a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc
5、棱柱
S-底面积 h-高 V=Sh
6、棱锥
S-底面积 h-高 V=Sh/3
7、棱台
S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积 ,S2-下底面积 ,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径 ,h-高 ,C—底面周长
S底—底面积 ,S侧—侧面积 ,S表—表面积 C=2πr
S底=πr²,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr²h
10、空心圆柱
R-外圆半径 ,r-内圆半径 h-高 V=πh(R^2-r^2)
11、直圆锥
r-底半径 h-高 V=πr^2h/3
12、圆台
r-上底半径 ,R-下底半径 ,h-高 V=πh(R²+Rr+r²)/3
13、球
r-半径 d-直径 V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径 V=πh(3a²+h²)/6 =πh²(3r-h)/3
15、球台
r1和r2-球台上、下底半径 h-高 V=πh[3(r1²+r2²)+h²]/6
16、圆环体
R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V=2π2Rr² =π2Dd²/4
17、桶状体
D-桶腹直径 d-桶底直径 h-桶高
V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)
V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)