求助高中数学二题
3个回答
展开全部
1、
a>1,b>1,故由均值不等式得
a^2/(b-1)+4(b-1)>=4a ......(1)
b^2/(a-1)+4(a-1)>=4b ......(2)
由(1)+(2)整理,得
a^2/(b-1)+b^2/(a-1)>=8.
2、先介绍重要的柯西不等式:
(a1²+b1²+c1²)(a2²+b2²+c2²)>=(a1a2+b1b2+c1c2)²
用文字表达即:方和积>=积和方
[a²/(b+c)]+b²/(a+c)+c²/(a+b)]((b+c)+(a+c)+(a+b))
≥(a+b+c)²
所以a²/(b+c)+b²/(a+c)+c²/(a+b)≥(1/2)(a+b+c)
a>1,b>1,故由均值不等式得
a^2/(b-1)+4(b-1)>=4a ......(1)
b^2/(a-1)+4(a-1)>=4b ......(2)
由(1)+(2)整理,得
a^2/(b-1)+b^2/(a-1)>=8.
2、先介绍重要的柯西不等式:
(a1²+b1²+c1²)(a2²+b2²+c2²)>=(a1a2+b1b2+c1c2)²
用文字表达即:方和积>=积和方
[a²/(b+c)]+b²/(a+c)+c²/(a+b)]((b+c)+(a+c)+(a+b))
≥(a+b+c)²
所以a²/(b+c)+b²/(a+c)+c²/(a+b)≥(1/2)(a+b+c)
追问
还是没看懂你那柯西不等式代到题目是怎么回事
追答
本题运用柯西不等式证明,不等式的内容先介绍一下
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设元:设x=a-1
y=b-1
则原不等式等价于:x,y>0
求证:(x+1)^2/y+(y+1)^2/x>=8
而::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/xy]
由于(x+1)^2>=4x
(y+1)^2>=4y
故::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/xy]
>=2√[【4x*4y】/xy]
=8
等号当且仅当:x=y=1时取得
以上这是第一个证明。。。第二个等一会儿;
y=b-1
则原不等式等价于:x,y>0
求证:(x+1)^2/y+(y+1)^2/x>=8
而::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/xy]
由于(x+1)^2>=4x
(y+1)^2>=4y
故::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/xy]
>=2√[【4x*4y】/xy]
=8
等号当且仅当:x=y=1时取得
以上这是第一个证明。。。第二个等一会儿;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询