高数格林公式的运用

 我来答
bill8341
高粉答主

2017-05-15 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3969万
展开全部
x² + y² = Rx ==> (x - R/2)² + y² = (R/2)² ==> r = Rcosθ
这是在y轴右边,与y轴相切的圆形
所以角度范围是有- π/2到π/2
又由于被积函数关于x轴对称
由对称性,所以∫∫D = 2∫∫D(上半部分),即角度范围由0到π/2
∫∫ √(R² - x² - y²) dxdy
= ∫∫ √(R² - r²) * r drdθ
= 2∫(0,π/2) dθ ∫(0,Rcosθ) √(R² - r²) * r dr
= 2∫(0,π/2) dθ * (- 1/2) * (2/3)(R² - r²)^(3/2) |(0,Rcosθ)
= (- 2/3)∫(0,π/2) [(R² - R²cos²θ)^(3/2) - R³] dθ
= (- 2/3)∫(0,π/2) R³(sin³θ - 1) dθ
= (- 2/3)R³ * (2!/3!- π/2),这里用了Wallis公式
= (- 2/3)R³ * (2/3 - π/2)
= (1/3)(π - 4/3)R³
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式