2个回答
展开全部
这是 斐波拉契数列(1,1,2,3,5,8,13,21,34,............),
通项公式 A(n)=(5+√5)/10*[(1+√5)/2]^n+(5-√5)/10*[(1-√5)/2]^n,
A(n-2)=A(n)-A(n-1), A(n)=A(n+2)-A(n+1),
S(n)=A(1)+A(2)+.......+A(n)
=[A(3)-A(2)]+[A(4)-A(3)]+......+[A(n+2)-A(n+1)]
= -A(2)+A(n+2)
=A(n+2)-A(2)
=(5+√5)/10*[(1+√5)/2]^(n+2)+(5-√5)/10*[(1-√5)/2]^(n+2)-2,
通项公式 A(n)=(5+√5)/10*[(1+√5)/2]^n+(5-√5)/10*[(1-√5)/2]^n,
A(n-2)=A(n)-A(n-1), A(n)=A(n+2)-A(n+1),
S(n)=A(1)+A(2)+.......+A(n)
=[A(3)-A(2)]+[A(4)-A(3)]+......+[A(n+2)-A(n+1)]
= -A(2)+A(n+2)
=A(n+2)-A(2)
=(5+√5)/10*[(1+√5)/2]^(n+2)+(5-√5)/10*[(1-√5)/2]^(n+2)-2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询