b1=1/2 b2=4/15 b3=1/6 b4=4/35 ........bn=4/(n+1)(n+3)
b1+b2+b3+b4+...+bn
=1/2+4/15+1/6+4/35+...+4/(n+1)(n+3)
=4/2×4+4/3×5+4/4×6+...+4/n(n+2)+4/(n+1)(n+3)
=2×[1/2-1/4+1/3-1/5+1/4-1/6+...1/n-1/(n+2)+1/(n+1)-1/(n+3)]
=2×[1/2-1/(n+2)+1/3-1/(n+3)]
=2×[5/6-(2n+5)/(n+2)(n+3)]
=5/3-2(2n+5)/[(n+2)(n+3)]