求函数极限
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2个回答
展开全部
7.解:∵lim(t->0)[(sint+cost-1)/t]=lim(t->0)[(sint+cost-1)'/t'] (0/0型极限,应用洛必达法则)
==lim(t->0)(cost-sint)=1..........(1)
∴ lim(x->∞){[sin(1/x)+cos(1/x)]^x}=lim(t->0)[(sint+cost)^(1/t)] (令t=1/x)
=lim(t->0){[[1+(sint+cost-1)]^[1/(sint+cost-1))]]^[(sint+cost-1)/t]}
={lim(t->0)[[1+(sint+cost-1)]^[1/(sint+cost-1))]]}^{lim(t->0)[(sint+cost-1)/t]}
=e^{lim(t->0)[(sint+cost-1)/t]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^1 (应用(1))
=e。
==lim(t->0)(cost-sint)=1..........(1)
∴ lim(x->∞){[sin(1/x)+cos(1/x)]^x}=lim(t->0)[(sint+cost)^(1/t)] (令t=1/x)
=lim(t->0){[[1+(sint+cost-1)]^[1/(sint+cost-1))]]^[(sint+cost-1)/t]}
={lim(t->0)[[1+(sint+cost-1)]^[1/(sint+cost-1))]]}^{lim(t->0)[(sint+cost-1)/t]}
=e^{lim(t->0)[(sint+cost-1)/t]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^1 (应用(1))
=e。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询