第七题,麻烦写出详细的解答 50

 我来答
百度网友8362f66
2017-12-16 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3329万
展开全部
解:在[0,1]中随机抽取xi(i=1,2,……n),可视作随机变量X~U(0,1)。故,X的分布函数为F(x)=0,x<0、F(x)=x,0<=x<1、F(x)=1,x>=1。
Z1的分布函数为Fz1(z)=Fx1(z)*Fx2(z)*…*Fxn(z)=z^n。故,其密度函数为fz1(z)=nz^(n-1),0<z<1、fz1(z)=0,z为其它值。同理,fz2(z)=n(1-z)^(n-1),0<z<1、fz2(z)=0,z为其它值。
故,E(z1)=∫(0,1)zfz1(z)=n/(n+1)。E[(z1)^2]=∫(0,1)z^2fz1(z)dz=n/(n+2)。D(z1)=E[(z1)^2]-[E(z1)]^2=n/[(n+2)(n+1)^2]。
同理,E(z2)=n/(n+l),D(z2)=n/[(n+2)(n+1)^2]。
E(z1-z2)=E(z1)-E(z2)=0。
供参考。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式