关于利用等价无穷小代换求极限
我知道等价无穷小代换应该在乘积项里面用,但是我现在有一个困惑。如果分子是两项和,比如(sinx+1-cosx)/x^2,那么可以不可以拆成(sinx/x^2)+(1-co...
我知道等价无穷小代换应该在乘积项里面用,但是我现在有一个困惑。
如果分子是两项和,比如(sinx+1-cosx)/x^2 ,那么可以不可以拆成(sinx/x^2)+(1-cosx)/x^2 这两项的和,然后分别用无穷小代换,再合起来呢?这道题应该是可以的吧?因为算出来是一样的。
但是如果拆开的两项还是未定式呢?是不是就不可以了?
我今天做一题,我拆开之后,两项分别用了无穷小代换,然后得到了两个相反的项,然后消掉为0了,但是实际上这个极限不为了0
请您帮我分析一下 展开
如果分子是两项和,比如(sinx+1-cosx)/x^2 ,那么可以不可以拆成(sinx/x^2)+(1-cosx)/x^2 这两项的和,然后分别用无穷小代换,再合起来呢?这道题应该是可以的吧?因为算出来是一样的。
但是如果拆开的两项还是未定式呢?是不是就不可以了?
我今天做一题,我拆开之后,两项分别用了无穷小代换,然后得到了两个相反的项,然后消掉为0了,但是实际上这个极限不为了0
请您帮我分析一下 展开
1个回答
展开全部
等价无穷小代换只能用在乘除上,不能用在加减上
更多追问追答
追问
我知道啊,您能不能回答问题里面我不知道的东西
追答
所谓等价无穷小其实为了求解极限方便而引入的概念,根据依然是泰勒展开,只不过是泰勒展开的低阶近似。
之所以老师们一再强调只有乘除关系可以替换,是因为乘除关系中,展开的阶次不影响结果,但是加减中不同,例如sinx-x不能用x替换sinx,原因不是说sinx在加减位置上,而是因为此时sinx用x替换的误差太大,精度不够,导致减去x后变为0,而其实还有一个等价无穷小替换是sinx-x~x^3/6,这里之所以这样替换其实是将sinx展开到了更高的精度,这样计算才不会出错。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询