1个回答
展开全部
a1 + a2 + ... + an = a1 * (1 - q^n) / (1 - q) = 1
1/a1 + 1/a2 + ... 1/an = (1/a1) * [1 - (1/q)^n] / (1 - 1/q) = 4
上式除下式得到
a1^2 * q^(n-1) = 1/4
即a1 * q^[(n-1)/2] = 1/2 = 2^(-1),令c = a1 * q^[(n-1)/2]
那么a1a2...an = a1^n * q^[(n-1)*n/2] = c^n = 2^(-n)
1/a1 + 1/a2 + ... 1/an = (1/a1) * [1 - (1/q)^n] / (1 - 1/q) = 4
上式除下式得到
a1^2 * q^(n-1) = 1/4
即a1 * q^[(n-1)/2] = 1/2 = 2^(-1),令c = a1 * q^[(n-1)/2]
那么a1a2...an = a1^n * q^[(n-1)*n/2] = c^n = 2^(-n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询