证明对任何n>0有F²(n+1)+F²(n+2)=F(2n+3)
1个回答
2018-07-05
展开全部
f(x) =x(x+1)(x+2)...(x+2n) f'(x) =(x+1)(x+2)...(x+2n)+x(x+2)...(x+2n)+x(x+1)(x+3)...(x+2n)+... +x(x+1)(x+2)...(x+2n-1) f'(-n)=-n(-n+1)(-n+2)....(-n+n-1)(-n+n+1)....(-n+2n) = (-1)^n . (n!)^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询