展开全部
y=tan(x+y), 两边对x求导
y'=sec^2(x+y)*(1+y')
y'=sec^2(x+y)/[1-sec^2(x+y)]
=sec^2(x+y)[-tan^2(x+y)]
=-csc^2(x+y)
两边再对x求导
y''=-2csc(x+y)*[-cot(x+y)*csc(x+y)]*(1+y')
=2csc(x+y)*cot(x+y)*csc(x+y)*[1-csc^2(x+y)]
=2csc^2(x+y)*cot(x+y)*[-cot^2(x+y)]
=-2csc^2(x+y)cot^3(x+y)
y'=sec^2(x+y)*(1+y')
y'=sec^2(x+y)/[1-sec^2(x+y)]
=sec^2(x+y)[-tan^2(x+y)]
=-csc^2(x+y)
两边再对x求导
y''=-2csc(x+y)*[-cot(x+y)*csc(x+y)]*(1+y')
=2csc(x+y)*cot(x+y)*csc(x+y)*[1-csc^2(x+y)]
=2csc^2(x+y)*cot(x+y)*[-cot^2(x+y)]
=-2csc^2(x+y)cot^3(x+y)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询