方程x²-4x+3a²-2=0在区间[-1,1]上有实根,则实数a的取值范围是
5个回答
展开全部
x²-4x+3a²-2=0 ∴(x+2)²=6-3a²
又∵ -1≤x≤1 ∴ 1≤(x+2)²≤9
∴ 1≤6-3a² ≤9
∴ 1≤a≤根号15/3 或 —根号15/3≤a≤—1
又∵ -1≤x≤1 ∴ 1≤(x+2)²≤9
∴ 1≤6-3a² ≤9
∴ 1≤a≤根号15/3 或 —根号15/3≤a≤—1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先讨论在-1 或1 上有根的情况,
1 - 4 + 3a^2 - 2 = 0 a=正负根号下三分之五。
1 + 4 + 3a^2 - 2 = 0 a 无解;
然后讨论方程在(-1, 1 )上有根的情况。
f(1) * f(- 1) < 0 ,(3 + 3a^2)(3a^2 - 5) < 0,
3 + 3a^2 > 0 ,a<负根号下三分之五或a>根号下三分之五。
综上, a<= 负根号下三分之五 或 a>=根号下三分之五。
望采纳,谢谢。
1 - 4 + 3a^2 - 2 = 0 a=正负根号下三分之五。
1 + 4 + 3a^2 - 2 = 0 a 无解;
然后讨论方程在(-1, 1 )上有根的情况。
f(1) * f(- 1) < 0 ,(3 + 3a^2)(3a^2 - 5) < 0,
3 + 3a^2 > 0 ,a<负根号下三分之五或a>根号下三分之五。
综上, a<= 负根号下三分之五 或 a>=根号下三分之五。
望采纳,谢谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设f(x)=x²-4x+3a²-2 则f(-1)=3a²+3 f(1)=3a²-5 f(-1)f(1)=3(a²+1)(3a²-5)≤0 解得-√15/3≤a≤√15/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-08-07 · 知道合伙人教育行家
关注
展开全部
方程化为 x^2-4x=2-3a^2 。
考察函数 f(x)=x^2-4x=(x-2)^2-4 ,它是开口向上的抛物线,对称轴为 x=2 ,
因此它在 [-1 ,1] 上单调递减,因此其值域为 [f(1),f(-1)] ,即 [-3 ,5] ,
也就是 -3<=2-3a^2<=5 ,
所以 -1<=a^2<=5/3 ,
解得 -√15/3<=a<=√15/3 ,
因此,所求的实数 a 的取值范围是 [ -√15/3 ,√15/3 ] 。
考察函数 f(x)=x^2-4x=(x-2)^2-4 ,它是开口向上的抛物线,对称轴为 x=2 ,
因此它在 [-1 ,1] 上单调递减,因此其值域为 [f(1),f(-1)] ,即 [-3 ,5] ,
也就是 -3<=2-3a^2<=5 ,
所以 -1<=a^2<=5/3 ,
解得 -√15/3<=a<=√15/3 ,
因此,所求的实数 a 的取值范围是 [ -√15/3 ,√15/3 ] 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询