f(x)=x|x-a|,若对任意X1,X2∈[2,+∞),X1≠X2,不等式{f(x1)-f(x2)/x1-x2}≥0恒成立,则a的取值范围?

雪域高原987
2012-08-07 · TA获得超过9415个赞
知道大有可为答主
回答量:3568
采纳率:100%
帮助的人:2031万
展开全部
解:由题意知f(x)=x|x-a|在[2,+∞)上单调递增.
(1)当a≤2时,
若x∈[2,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=a 2 ,
此时a 2 <2,所以f(x)在[2,+∞)上是递增的;
(2)当a>2时,
①若x∈[a,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=a 2 ,所以f(x)在[a,+∞)上是递增的;
②若x∈[2,a),则f(x)=x(a-x)=-x2+ax,其对称轴为x=a 2 ,所以f(x)在[a 2 ,a)上是递减的,因此f(x)
在[2,a)上必有递减区间.
综上可知a≤2.
故答案为(-∞,2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式