红线这一步骤是怎么推算出来的呢?谢谢解答回复。
1个回答
展开全部
解
(1/2)∫[0,-1]x√(1-x^2)dx
=(-1/4)∫[0,-1]√(1-x^2)d(1-x^2)
=(-1/4)*(2/3)*(1-x^2)^(3/2)|[0,-1]
=(-1/6)(1-x^2)^(3/2)|[0,-1]
=-1/6
------------------------------------
(1/2)∫[0,-1]√(1-x^2)dx,令x=sint
=(1/2)∫[0,-π/2](cost)^2dt
=(1/4)∫[0,-π/2]cos2t+1 dt
=(1/8)∫[0,-π/2]cos2td(2t)+(1/4)∫[0,-π/2]dt
=[(1/8)sin2t+(1/4)t] | [0,-π/2]
=π/8
-----------------
综上,原式=(π/8)-(1/6)
(1/2)∫[0,-1]x√(1-x^2)dx
=(-1/4)∫[0,-1]√(1-x^2)d(1-x^2)
=(-1/4)*(2/3)*(1-x^2)^(3/2)|[0,-1]
=(-1/6)(1-x^2)^(3/2)|[0,-1]
=-1/6
------------------------------------
(1/2)∫[0,-1]√(1-x^2)dx,令x=sint
=(1/2)∫[0,-π/2](cost)^2dt
=(1/4)∫[0,-π/2]cos2t+1 dt
=(1/8)∫[0,-π/2]cos2td(2t)+(1/4)∫[0,-π/2]dt
=[(1/8)sin2t+(1/4)t] | [0,-π/2]
=π/8
-----------------
综上,原式=(π/8)-(1/6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询