4个回答
展开全部
y=arcsin[(eˣ-e⁻ˣ)/(eˣ+e⁻ˣ)]
y'=1/√[1-(eˣ-e⁻ˣ)²/(eˣ+e⁻ˣ)²]·[(eˣ-e⁻ˣ)/(eˣ+e⁻ˣ)]'
=½(eˣ+e⁻ˣ)·[(eˣ+e⁻ˣ)·(eˣ+e⁻ˣ)-(eˣ-e⁻ˣ)·(eˣ-e⁻ˣ)]/(eˣ+e⁻ˣ)²
=2/(eˣ+e⁻ˣ)
y=√(x²-a²)-a·arcsin(a/x)
y'=(x²-a²)'/2√(x²-a²)-a·(a/x)'/√[1-(a/x)²]
=x/√(x²-a²)+(a²/x²)·√[(1-(a/x)²]
=x/√(x²-a²)+a²/√(x⁴-a²x²)
y'=1/√[1-(eˣ-e⁻ˣ)²/(eˣ+e⁻ˣ)²]·[(eˣ-e⁻ˣ)/(eˣ+e⁻ˣ)]'
=½(eˣ+e⁻ˣ)·[(eˣ+e⁻ˣ)·(eˣ+e⁻ˣ)-(eˣ-e⁻ˣ)·(eˣ-e⁻ˣ)]/(eˣ+e⁻ˣ)²
=2/(eˣ+e⁻ˣ)
y=√(x²-a²)-a·arcsin(a/x)
y'=(x²-a²)'/2√(x²-a²)-a·(a/x)'/√[1-(a/x)²]
=x/√(x²-a²)+(a²/x²)·√[(1-(a/x)²]
=x/√(x²-a²)+a²/√(x⁴-a²x²)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |