如图所示:在△ABC中,∠BAC=∠BCA=44°,M为△ABC内一点,使得∠MCA=30°,∠MAC=16°,求∠BMC的度数。 10

小鱼考研资料
2012-10-05 · TA获得超过1003个赞
知道答主
回答量:101
采纳率:0%
帮助的人:51.7万
展开全部
解:过B作BD⊥AC,交AC于D,延长CM交BD于E,连接AE
∵在△ABC中∠BAC=∠BCA=44°
∴△ABC为等腰三角形,∠ABC=92°为顶角
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠DBA=46°
∵E为BD上的点
∴EC=EA ∠ECA=∠EAC=30°
∵∠ECA=30° ∠MAC=16° ∠BAC=44°
∠EAC=∠EAM+∠MAC=30°∠BAC=∠BAE+∠EAD
∴∠EAM=∠EAC-∠MAC=30°-16°=14° ∠BAE=∠BAC-∠EAC=44°-30°=14°
∴∠BAE=∠EAM=14°
∵∠EMA=∠ECA+∠MAC=30°+16°=46°
∴∠EMA=∠EBA=46°
∴∠MEA=180°-∠EMA-∠EAM=120°
∠BEA=180°-∠EBA-∠EAB=120°
∴△BEA≌△MEA(ASA)
∴BA=MA
∴△ABM为等腰三角形,∠BAM为顶角,且∠BAM=∠BAE+∠EAM=14°+14°=28°
∴∠BMA=76°
∵∠CMA=180°-∠MCA-∠MAC=180°-30°-16°=134°
∴∠BMC=360°-∠CMA-∠BMA=360°-134°-76°=150°
chyzy615
2012-08-08 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1834
采纳率:0%
帮助的人:1675万
展开全部
∵∠ABC=180°-44×2=92º
将⊿BMC顺时针旋转92º得到BAM1,连接M1M
则AM=AM1,∠M1AM=44º
∴∠AM1M=(180-44)/2=68º
∵BM=BM1,∠M1BM=92º
∴∠BM1M=44º
∴∠AM1B=44+68=112º
∴∠BMC=∠AM1B=112º
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式