求这道题的详细过程,谢谢
1个回答
展开全部
根据题意,设任意的一次函数g(x)=kx+t,其中k,t为常数,且不同时为0.
则:
f(x)g(x)=(ax^2+bx+1)(kx+t)
=akx^3+bkx^2+kx+ax^2t+bxt+t
=akx^3+(at+bk)x^2+(bt+k)x+t
再取定积分得到:
∫(0,1)f(x)g(x)dx
=∫(0,1)[akx^3+(at+bk)x^2+(bt+k)x+t]dx
={(ak/4)x^4+[(at+bk)/3]x^3+[(bt+k)/2]x^2+tx}(0,1)
=ak/4+[(at+bk)/3]+[(bt+k)/2]+t
=(a/4+b/3+1/2)k+(a/3+b/2+1)t=0
所以:
a/4+b/3+1/2=0
a/3+b/2+1=0
则a=6
b=-6.
则:
f(x)g(x)=(ax^2+bx+1)(kx+t)
=akx^3+bkx^2+kx+ax^2t+bxt+t
=akx^3+(at+bk)x^2+(bt+k)x+t
再取定积分得到:
∫(0,1)f(x)g(x)dx
=∫(0,1)[akx^3+(at+bk)x^2+(bt+k)x+t]dx
={(ak/4)x^4+[(at+bk)/3]x^3+[(bt+k)/2]x^2+tx}(0,1)
=ak/4+[(at+bk)/3]+[(bt+k)/2]+t
=(a/4+b/3+1/2)k+(a/3+b/2+1)t=0
所以:
a/4+b/3+1/2=0
a/3+b/2+1=0
则a=6
b=-6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询