如图,在三角形ABC中,AB=AC,角A=36°,BD,CE分别是角ABC,与角ACB的角平分线,且相交于点P,等腰三角形有几对?
2个回答
展开全部
解:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=180°-36° 2 =72°,
∵BD、CE分别为∠ABC与∠ACB的角平分线,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BF=CF,
∴△ABC,△ABD,△ACE,△BFC是等腰三角形,
∵∠BEC=180°-∠ABC-∠BCE=72°,∠CDB=180°-∠BCD-∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,
∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,
∴BE=BF,CF=CD,BC=BD=CF,
∴△BEF,△CDF,△BCD,△CBE是等腰三角形.
∴图中的等腰三角形有8个.
你图中的点P是我图中的点F
望采纳,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询