矿物学的发展史
2020-01-17 · 技术研发知识服务融合发展。
矿物学的发展跨越了几个世纪。作为一门科学,它的发展历史相对来说并不算长,但在应用方面却与人类文明历史一样悠久。例如,在石器时代,人们就认识到当某些矿物被制成工具或武器时,能为人类提供食物和保护。早期被人类用于洞穴绘画的天然颜料,即由赤铁矿(红色)和磁铁矿(黑色)组成。在青铜时代,人类已开始找寻能够提取金属的矿物,并熔炼矿石制作用具。
矿物学作为独立的研究领域的出现是以德国物理学家阿格里柯拉(Georgius Africolar)于1556年著写的De Re Metallica(中文译为《矿冶全书》或《论金属》)一书作为标志。该书堪称欧洲采矿冶金技术的经典。因此,在欧洲各国有很大的影响。这本书共分12卷,全面总结了欧洲至16时期的找矿、采矿、选矿及矿石熔炼操作等技术经验;详细论述了从矿石中冶炼金属,分离和鉴别各种金属的方法;并首次提出了“矿物”这一名词。在此之前,人类也有一些关于矿物的记载,如我国的《山海经》(公元前约475年)是世界上最早记述矿物原料的书籍。之后,我国的《本草纲目》(1596年)一书详细考证了药用矿物,包括矿物的特征、鉴别方法、产地、产状及医药效用。
随着社会生产力的不断发展,矿物学也在不断地发展着。许多科学家为矿物学的发展做出了伟大的贡献(表1-1)。1857年,偏光显微镜问世,并成功应用于矿物的鉴定和研究。1895年伦琴(Rontgen)发现X射线,1912年劳埃(Max Von Laue)对X射线晶体衍射实验的成功,使得测定矿物晶体内部结构成为现实,从而获得矿物的化学成分与晶体结构之间的统一关系。20世纪30年代以来,矿物学研究引入了相平衡理论和物理化学理论,用于探讨矿物在不同地质条件下的稳定性,以及矿物之间的共生关系和分布规律等。20世纪60年代以来,一系列现代测试技术和手段,包括电子光学和激光测试技术、各种波谱学手段、高温和超高压实验核技术、电子计算机技术等等,以及物理、化学方面的现代理论被用于矿物学研究,使矿物学的研究进入了一个以微区、高分辨、精细结构为特征,宏观与微观相结合的新阶段。而以往较侧重的描述矿物学,现已被研究矿物的形成和变化的过程所替代。有关矿物成因、矿物结构的缺陷和不均匀性,以及生物对矿物的影响是现代矿物学研究的侧重点。
现代的矿物学已发展成为与行星科学、生物学、材料及环境科学等许多学科高度交叉渗透的综合性的矿物科学。矿物学的主要方向以及一些跨学科的方向不断得到发展和完善。其研究内容广泛,并且高深。例如,①模拟地幔和地核的物质组成,在高温高压下进行人造新矿物,如后钙钛矿;②凭借应用极高的压力或电子束辐射矿物探查从结晶质到非晶质态的转变,目的是为了寻找适合于存储核废物能力的矿物;③研究微生物造成的矿物沉淀或溶解,并控制元素在地表及地表以下的不同环境中的分布;④矿物表面所涉及的动力化学反应的研究;等等。以上的研究有利于了解地球和其他行星所具有的复杂、异样的组成,并可获取矿物在地质演化过程中的信息。
表1-1 部分著名科学家对矿物学科的伟大贡献
从事固体物质的研究及其应用,需要矿物学者的专业理论知识和专业技能。因此,有志者需奠定扎实的矿物学基础,方能胜任。