
在三角形ABC中求证sin^2A=sin^2B+sin^2C-2sinBsinCcosA
2个回答
展开全部
令三个角的对边分别为a、b、c,则:
b/a=sinB/sinA,c/a=sinC/sinA
a^2=b^2+c^2-2bccosA
1=(b/a)^2+(c/a)^2-2*b/a*c/a*cosA
1=(sinB/sinA)^2+(sinC/sinA)^2-2sinB/sinA*sinC/sinA*cosA
(sinA)^2=(sinB)^2+(sinC)^2-2sinB*sinC*cosA
b/a=sinB/sinA,c/a=sinC/sinA
a^2=b^2+c^2-2bccosA
1=(b/a)^2+(c/a)^2-2*b/a*c/a*cosA
1=(sinB/sinA)^2+(sinC/sinA)^2-2sinB/sinA*sinC/sinA*cosA
(sinA)^2=(sinB)^2+(sinC)^2-2sinB*sinC*cosA
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询