计算:1×2²+2×3²+3×4²+...+18×19²+19×20²
提示:1²+2²+3²+...+n²=1/6n(n+1)(2n+1),1³+2³+...+n³=1/...
提示:1²+2²+3²+...+n²=1/6 n(n+1)(2n+1),1³+2³+...+n³=1/4 n²(n+1)²
这是原题,小学奥数整数裂项,急求解!!!写得好的给分。 展开
这是原题,小学奥数整数裂项,急求解!!!写得好的给分。 展开
1个回答
展开全部
1×2²+2×3²+3×4²+...+18×19²+19×20²
=(2-1)×2²+(3-1)×3²+(4-1)×4²+...+(19-1)×19²+(20-1)×20²
=(1³+2³+...+20³)-1-(1²+2²+3²+...+20²)+1
=1/4x20²x21²-1/6x20x21x41
=1/4x400x441-2870
=44100-2870
=41230
=(2-1)×2²+(3-1)×3²+(4-1)×4²+...+(19-1)×19²+(20-1)×20²
=(1³+2³+...+20³)-1-(1²+2²+3²+...+20²)+1
=1/4x20²x21²-1/6x20x21x41
=1/4x400x441-2870
=44100-2870
=41230
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询