4个回答
展开全部
这属于缺 x (自变量)型
令 y' = p, 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
则 ypdp/dy = 1-p^2, -2pdp/(1-p^2) = -2dy/y
ln(1-p^2) = -2lny + lnC1
1-p^2 = C1/y^2, p = dy/dx = ±√(1-C1/y^2)
dy/√(1-C1/y^2) = ±dx, ydy/√(y^2-C1) = ±dx
√(y^2-C1) = ±x + C2, y^2-C1 = (±x + C2)^2
令 y' = p, 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
则 ypdp/dy = 1-p^2, -2pdp/(1-p^2) = -2dy/y
ln(1-p^2) = -2lny + lnC1
1-p^2 = C1/y^2, p = dy/dx = ±√(1-C1/y^2)
dy/√(1-C1/y^2) = ±dx, ydy/√(y^2-C1) = ±dx
√(y^2-C1) = ±x + C2, y^2-C1 = (±x + C2)^2
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询