已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. 设有且仅有一个实数x0,使得f(x0)=x0,

求函数f(x)的解析表达式?没看懂题目的意思~可以解释一下么谢谢~!... 求函数f(x)的解析表达式?没看懂题目的意思~可以解释一下么谢谢~! 展开
我爱学习112
高粉答主

2021-10-22 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:164万
展开全部

解:

根据题意 f(f(x)-x^2+x)=f(x)-x^2+x 且f(x0)=x0 得:

f(x0)-x0^2+x0=x0

将f(x0)=x0 代入得:

x0-x0^2+x0=x0

解这个方程得:

x0=0或x0=1

验证:

若 x0=0 则函数始终满足 f(x)-x^2+x=0 故函数解析式为 f(x)=x^2-x。

经计算该函数与f(x)=x 在图像上有两个交点 分别是f(0)=0和f(2)=2。

这与题目中该函数有且只有一个实数X0,使得F(X0)=X0,不符,故舍去。

若x0=1 则函数始终满足 f(x)-x^2+x=1 故函数解析式为 f(x)=x^2-x+1。

经计算 该函数与f(x)=x 在图像上有且只有一个交点,即f(1)=1,符合题意。

综上所述 函数解析式为: f(x)=x^2-x+1。

简介

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f。

记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

luxuhui1972
2012-08-09 · TA获得超过7658个赞
知道大有可为答主
回答量:2427
采纳率:0%
帮助的人:1324万
展开全部
∵有且仅有一个实数x0,使得f(x0)=x0
∴ f(x)-x²+x=x0
即f(x)=x²-x+x0
∴有且仅有一个实数x0满足x²-x+x0=x。
即x²-2x+x0=0有两个相等实根x0
∴x0+x0=2
∴x0=1
∴f(x)=x²-x+1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
he36xyc
2012-08-09 · TA获得超过1495个赞
知道小有建树答主
回答量:598
采纳率:0%
帮助的人:446万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式