当θ为第二象限角,且sin(θ/2+π/2)=1/3时[√(1-sinθ)]/[cos(θ/2)-sin(θ/2)]的值是
2个回答
展开全部
sin(θ/2+π/2)=1/3
cos(θ/2)=1/3
根据 θ为第二象限角 和 cos(θ/2)为正值
可得 sin(θ/2)为正值
那么 sin(θ/2)=2√2/3
cos(θ/2)-sin(θ/2)=(1-2√2)/3<0
[√(1-sinθ)]/[cos(θ/2)-sin(θ/2)]
=[√(sin^2(θ/2)+cos^2(θ/2)-2sin(θ/2)cos(θ/2))]/[cos(θ/2)-sin(θ/2)]
= [√(sin(θ/2)-cos(θ/2))^2]/[cos(θ/2)-sin(θ/2)]
=|cos(θ/2)-sin(θ/2)|/[cos(θ/2)-sin(θ/2)]
=-1
欢迎追问!
cos(θ/2)=1/3
根据 θ为第二象限角 和 cos(θ/2)为正值
可得 sin(θ/2)为正值
那么 sin(θ/2)=2√2/3
cos(θ/2)-sin(θ/2)=(1-2√2)/3<0
[√(1-sinθ)]/[cos(θ/2)-sin(θ/2)]
=[√(sin^2(θ/2)+cos^2(θ/2)-2sin(θ/2)cos(θ/2))]/[cos(θ/2)-sin(θ/2)]
= [√(sin(θ/2)-cos(θ/2))^2]/[cos(θ/2)-sin(θ/2)]
=|cos(θ/2)-sin(θ/2)|/[cos(θ/2)-sin(θ/2)]
=-1
欢迎追问!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询