展开全部
lim(x→+∞)[(1/x+1)/√(1/x²+1)]
=lim(x→+∞)[(1+x)/√(1+x²)
=lim(x→+∞)√[(1+2x+x²)/(1+x²)]
=lim(x→∞)√[1+2x/(1+x²)]
=1
lim(x→-∞)[(1+x)/-x√(1/x²+1)]
=-lim(x→-∞)[(1+x)/√(1+x²)
=-lim(x→+∞)√[(1+2x+x²)/(1+x²)]
=-lim(x→∞)√[1+2x/(1+x²)]
=-1
=lim(x→+∞)[(1+x)/√(1+x²)
=lim(x→+∞)√[(1+2x+x²)/(1+x²)]
=lim(x→∞)√[1+2x/(1+x²)]
=1
lim(x→-∞)[(1+x)/-x√(1/x²+1)]
=-lim(x→-∞)[(1+x)/√(1+x²)
=-lim(x→+∞)√[(1+2x+x²)/(1+x²)]
=-lim(x→∞)√[1+2x/(1+x²)]
=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询