矩形ABCD中,AB=20cm,BC=10cm.若在AC,AB上各取一点M,N,使BM+MN的值最小.试求出这个值.

详细解法。... 详细解法。 展开
 我来答
千本桜3
2013-10-07 · TA获得超过509个赞
知道小有建树答主
回答量:116
采纳率:0%
帮助的人:79.6万
展开全部
要使BM+MN的值最小,即点B到直线AE的距离最小
即当BE垂直AE时,BM+MN的值最小,最小值就是BE的长度

延长CB至G,使BG=BC,连接AG,过G作GH垂直AC于H
因为 BG=BC,AB垂直CG
所以 角GAB=角BAC,AG=AC
因为 角EAC=角BAC
所以 角GAC=角BAE
因为 AB=20,BG=BC=10,AB垂直CG
所以 AG=AC=10√5
因为 三角形AGC的面积=1/2AC*GH=1/2CG*AB
所以 GH=8√5
因为 AG=AC=10√5
所以 sin(∠GAC)=4/5
因为 角GAC=角BAE
所以 sin(∠BAE)=4/5
因为 AB=20,BE垂直AE
所以 BE=16
所以 BM+MN的最小值=16 。
橴噆
2014-12-20 · TA获得超过107个赞
知道答主
回答量:99
采纳率:0%
帮助的人:63.4万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式