如图所示,已知AB//CD,求证:∠B+∠E+∠D=360°,要求:至少用三种方法证明
展开全部
证明:
(1)连接BD
∵AB∥CD(已知),
∴∠ABD+∠CDB=180°(两直线平行,同旁内角互补)
∵∠1+∠2+∠BED=180°(三角形内角和为180°),
∴∠ABD+∠1+∠CDB+∠2+∠BED=360°,
即∠ABE+∠CDE+∠BED=360°.
(2)延长DE交AB延长线于F
∵AB∥CD(已知),
∴∠F+∠D=180°(两直线平行,同旁内角互补)
∵∠ABE=∠FEB+∠F,
∠BED=∠FBE+∠F(三角形一个外角等于和它不相邻的两个内角的和)
∴∠ABE+∠CDE+∠BED
=∠FEB+∠F+∠CDE+∠FBE+∠F
=180°+180°
=360°.
(3)过点E作EF∥AB
∵AB∥CD,
∴AB∥EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠B+∠BEF=180°
∠D+∠DEF=180°(两直线平行,同旁内角互补)
∴∠B+∠BEF+∠D+∠DEF
=180°+180°
=360°.
望采纳!谢谢~~
(1)连接BD
∵AB∥CD(已知),
∴∠ABD+∠CDB=180°(两直线平行,同旁内角互补)
∵∠1+∠2+∠BED=180°(三角形内角和为180°),
∴∠ABD+∠1+∠CDB+∠2+∠BED=360°,
即∠ABE+∠CDE+∠BED=360°.
(2)延长DE交AB延长线于F
∵AB∥CD(已知),
∴∠F+∠D=180°(两直线平行,同旁内角互补)
∵∠ABE=∠FEB+∠F,
∠BED=∠FBE+∠F(三角形一个外角等于和它不相邻的两个内角的和)
∴∠ABE+∠CDE+∠BED
=∠FEB+∠F+∠CDE+∠FBE+∠F
=180°+180°
=360°.
(3)过点E作EF∥AB
∵AB∥CD,
∴AB∥EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠B+∠BEF=180°
∠D+∠DEF=180°(两直线平行,同旁内角互补)
∴∠B+∠BEF+∠D+∠DEF
=180°+180°
=360°.
望采纳!谢谢~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询