已知函数f(x)=2cos^2x+2根号3sinxcosx
展开全部
首先a^b表示a的b次方
y=4cosx^2
4根号3sinxcosx-2
(首先把自变量的形式都化为相同,等下好合并)
=2(cos2x
1)
2根号3sin2x-2
=2[cos2x
根号3sin2x]
=4[1/2cos2x
2分之根号3sin2x]
=4sin(π/6
2x)
所以最小正周期t=2π/2=π
这种题目注意一种形式的化简
asinx
bsinx
=根号a^2
b^2[a/(根号a^2
根号b^2)
b/(根号a^2
根号b^2)]
然后直接解出
最小正周期t=2π/w
y=4cosx^2
4根号3sinxcosx-2
(首先把自变量的形式都化为相同,等下好合并)
=2(cos2x
1)
2根号3sin2x-2
=2[cos2x
根号3sin2x]
=4[1/2cos2x
2分之根号3sin2x]
=4sin(π/6
2x)
所以最小正周期t=2π/2=π
这种题目注意一种形式的化简
asinx
bsinx
=根号a^2
b^2[a/(根号a^2
根号b^2)
b/(根号a^2
根号b^2)]
然后直接解出
最小正周期t=2π/w
展开全部
答:
f(x)=2(cosx)^2+2√3sinxcosx
=cos2x+1+√3sin2x
=2*[(√3/2)sin2x+(1/2)cos2x]+1
=2sin(2x+π/6)+1
单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2
kπ-π/3<=x<=kπ+π/6
所以:单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
单调递减区间满足:2kπ+π/2<=2x+π/6<=2kπ+3π/2
kπ+π/6<=x<=kπ+2π/3
所以:单调递增区间为[kπ+π/6,kπ+2π/3],k∈Z
f(x)=2(cosx)^2+2√3sinxcosx
=cos2x+1+√3sin2x
=2*[(√3/2)sin2x+(1/2)cos2x]+1
=2sin(2x+π/6)+1
单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2
kπ-π/3<=x<=kπ+π/6
所以:单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
单调递减区间满足:2kπ+π/2<=2x+π/6<=2kπ+3π/2
kπ+π/6<=x<=kπ+2π/3
所以:单调递增区间为[kπ+π/6,kπ+2π/3],k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询