设等差数列{an}的前n项和为Sn 若a1<0 S2013=0
1个回答
展开全部
1. S2013=(a1+a2013)*2013/2=0
a1+a2013=0 a1<0 a2013>0
所以 d>0
a1+a2013=2a1007=0
a1007=0
前1006项都为负数,所以S1006最小,n=1006
2. a2013=a1+2012d=0
a1=-2012d
Sn=na1+n(n-1)d/2=-2012nd+n(n-1)d/2
an=a1+(n-1)d=-2013d+nd
an-Sn
=-2013d+nd+2012nd-n(n-1)d/2
=2013d(n-1)-n(n-1)d/2
=d(n-1)(2013-n/2)
=d/2(n-1)(4026-n)>=0 d>0
(n-1)(n-4026)<=0
1<=n<=4026
n的取值集合,{1,2,3,……,4026}
a1+a2013=0 a1<0 a2013>0
所以 d>0
a1+a2013=2a1007=0
a1007=0
前1006项都为负数,所以S1006最小,n=1006
2. a2013=a1+2012d=0
a1=-2012d
Sn=na1+n(n-1)d/2=-2012nd+n(n-1)d/2
an=a1+(n-1)d=-2013d+nd
an-Sn
=-2013d+nd+2012nd-n(n-1)d/2
=2013d(n-1)-n(n-1)d/2
=d(n-1)(2013-n/2)
=d/2(n-1)(4026-n)>=0 d>0
(n-1)(n-4026)<=0
1<=n<=4026
n的取值集合,{1,2,3,……,4026}
追问
哦~感谢亲~
额,这样看的话a1007=0 那n=1007也可以算是最小吧 ?
追答
是的
n=1006或n=1007
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询