求这个题的答案!!要过程!
展开全部
1),1/[(2n+1)(2n十3)]
=1/2[1/(2n+1)-1/(2n十3)]。
Sn=1/(3x5)+1/(5X7)+1/(7X9)+····+1/[(2n-1)(2n十1)]十1/[(2n+1)(2n十3)]
=1/2(1/3-1/5)十1/2(1/5-1/7)+(1/7-1/9)+···+1/2[1/(2n+1)-1/(2n+3)
=1/2[1/3-1/5+1/5一1/7+1/7-1/9+···+1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
=n/[3(2n+3)]。
2),
丅n=a1b1+a2b2+a3b3+···+a(n-1)b(n-1)+anbn
=3x3+5x3²+7x3³+···+(2n-1)ⅹ3^(n-1)+(2n+1)x3^n①
∴
3Tn=3x3²+5x3³+7x3^4+···+(2n-1)ⅹ3^n+(2n+3)x3^(n+1)②,
由①-②得:
-2Tn=3x3+2x3²+2x3³+···+2x3^n-(2n+3)ⅹ3^(n+1)
=2(3+3²+···+3n)-(2n+3)ⅹ3^(n+1)-3
=2x3(1-3^n)/(1-3)-(2n+3)x3^(n+1)-3
=-2(n+1)x3^(n+1)-6,
∴Tn=(n+1)x3^(n+1)+3。
=1/2[1/(2n+1)-1/(2n十3)]。
Sn=1/(3x5)+1/(5X7)+1/(7X9)+····+1/[(2n-1)(2n十1)]十1/[(2n+1)(2n十3)]
=1/2(1/3-1/5)十1/2(1/5-1/7)+(1/7-1/9)+···+1/2[1/(2n+1)-1/(2n+3)
=1/2[1/3-1/5+1/5一1/7+1/7-1/9+···+1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
=n/[3(2n+3)]。
2),
丅n=a1b1+a2b2+a3b3+···+a(n-1)b(n-1)+anbn
=3x3+5x3²+7x3³+···+(2n-1)ⅹ3^(n-1)+(2n+1)x3^n①
∴
3Tn=3x3²+5x3³+7x3^4+···+(2n-1)ⅹ3^n+(2n+3)x3^(n+1)②,
由①-②得:
-2Tn=3x3+2x3²+2x3³+···+2x3^n-(2n+3)ⅹ3^(n+1)
=2(3+3²+···+3n)-(2n+3)ⅹ3^(n+1)-3
=2x3(1-3^n)/(1-3)-(2n+3)x3^(n+1)-3
=-2(n+1)x3^(n+1)-6,
∴Tn=(n+1)x3^(n+1)+3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询