抛物线点到直线的最短距离
3个回答
展开全部
最短距离就是直线和抛物线平行的那个点
即求出抛物线的切线且和该直线平行
抛物线求导
2y*y'=4
y'=2/y=2/√4x
或y'=2/y=2/-√4x
因为直线导数为-1
即y'=2/y=2/√4x =-1 不存在舍去或y'=2/y=2/-√4x =-1,得到x=1则y=-2
即点(1,-2)到直线的距离最短
如果看不懂我就利用高中方法在告诉你
即求出抛物线的切线且和该直线平行
抛物线求导
2y*y'=4
y'=2/y=2/√4x
或y'=2/y=2/-√4x
因为直线导数为-1
即y'=2/y=2/√4x =-1 不存在舍去或y'=2/y=2/-√4x =-1,得到x=1则y=-2
即点(1,-2)到直线的距离最短
如果看不懂我就利用高中方法在告诉你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求于抛物线相切又平行于x+y+3=0的直线,即设为X+y+k=0
将x=-k-y代入抛物线y2+y+k=0只有一个解,即1-4k=0
k=1/4
。所以最短距离2.75/根下2
将x=-k-y代入抛物线y2+y+k=0只有一个解,即1-4k=0
k=1/4
。所以最短距离2.75/根下2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询