数列[(-1)^n+1][(n+1)/n]的极限
4个回答
展开全部
lim[(n-1)/(n+1)]^n
=lim[(n+1-2)/(n+1)]^n
=lim[1+(-2)/(n+1)]^n
=lim[1+(-2)/(n+1)]^(n+1-1)
=lim[1+(-2)/(n+1)]^(n+1)*1
={lim[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
根据重要的极限:lim(1+1/n)^n=e=e^(-2)
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
展开全部
n=2N时,[(-1)^n
+
1][(n+1)/n]
=
[(-1)^(2N)
+
1]/[(2N+1)/(2N)]
=
(2N+1)/N
=
2
+
1/N,
n=2N->无穷大时,N->无穷大,[(-1)^n
+
1][(n+1)/n]
=
2
+
1/N
->
2
n=2N+1时,[(-1)^n
+
1][(n+1)/n]
=
[(-1)^(2N+1)
+
1][(2N+2)/(2N+1)]
=
0.
n=2N+1->无穷大时,[(-1)^n+1][(n+1)/n]
->
0
不等于
2.
因此,n->无穷大时,[(-1)^n+1][(n+1)/n]的极限不存在。
+
1][(n+1)/n]
=
[(-1)^(2N)
+
1]/[(2N+1)/(2N)]
=
(2N+1)/N
=
2
+
1/N,
n=2N->无穷大时,N->无穷大,[(-1)^n
+
1][(n+1)/n]
=
2
+
1/N
->
2
n=2N+1时,[(-1)^n
+
1][(n+1)/n]
=
[(-1)^(2N+1)
+
1][(2N+2)/(2N+1)]
=
0.
n=2N+1->无穷大时,[(-1)^n+1][(n+1)/n]
->
0
不等于
2.
因此,n->无穷大时,[(-1)^n+1][(n+1)/n]的极限不存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim
[(n-1)/(n+1)]^n
=lim
[(n+1-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^(n+1-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
lim
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
1
=lim
[1+(-2)/(n+1)]^[(n+1)/(-2)
*
(-2)]
=lim
{[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
={lim
[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
根据重要的极限:lim
(1+1/n)^n=e
=e^(-2)
有不懂欢迎追问
[(n-1)/(n+1)]^n
=lim
[(n+1-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^(n+1-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
lim
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
1
=lim
[1+(-2)/(n+1)]^[(n+1)/(-2)
*
(-2)]
=lim
{[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
={lim
[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
根据重要的极限:lim
(1+1/n)^n=e
=e^(-2)
有不懂欢迎追问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |