设f(x)在[a,b]上连续,且f(x)不恒等于零,证明∫(a,b)[f(x)]²dx>0

 我来答
布秀云钦雨
2019-10-15 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:767万
展开全部
用分部积分就可以证明了,∫(a,b)xf(x)f'(x)dx=∫(a,b)xf(x)df(x)=1/2∫(a,b)xdf(x)^2=1/2x*f(x)^2|(a,b)-1/2∫(a,b)f(x)^2dx,因为f(a)=f(b)=0,所以有1/2x*f(x)^2|(a,b)=0,而∫(a,b)f(x)^2dx中被积函数是正数,所以积分大于零,从而得正,希望能帮助你
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式