初三数学题,要过程
已知抛物线y=-(x-m)的平方+1与x轴的交点为A,B(点B在点A的右边),与y轴的交点为c,顶点为D。(1)当m=1时,判断△ABD的形状,并说明理由。(2)当点B在...
已知抛物线y=-(x-m)的平方+1与x轴的交点为A,B(点B在点A的右边),与y轴的交点为c,顶点为D。 (1)当m=1时,判断△ABD的形状,并说明理由。 (2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由。
展开
展开全部
分析:
(1)将m=1代入y=-(x-m)2+1化简可得抛物线的解析式为y=-x2+2x;
(2)存在.令y=0时得出(x-m)2=1得出A,B的坐标.令x=0时得出点C在原点下方得出OC=m2-1,求出m的实际值;
(3)已知抛物线y=-(x-m)2+1,根据m值的不同分情况解答.
解:
(1)当m=1时,抛物线的解析式为y=-x2+2x.
正确的结论有:
①抛物线的解析式为y=-x2+2x;
②开口向下;
③顶点为(1,1);④抛物线经过原点;
⑤与x轴另一个交点是(2,0);
⑥对称轴为x=1;等(3分)
说明:每正确写出一个得一分,最多不超过(3分).
(2)存在.
当y=0时,-(x-m)2+1=0,即有(x-m)2=1.
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0)(4分)
∵点B在原点右边
∴OB=m+1
∵当x=0时,y=1-m2,点C在原点下方
∴OC=m2-1.(5分)
当m2-1=m+1时,m2-m-2=0
∴m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
∴存在△BOC为等腰三角形的情形,此时m=2.(7分)
(3)如①对任意的m,抛物线y=-(x-m)2+1的顶点都在直线y=1上;
②对任意的m,抛物线y=-(x-m)2+1与x轴的两个交点间的距离是一个定值;
③对任意的m,抛物线y=-(x-m)2+1与x轴两个交点的横坐标之差的绝对值为2.
(1)将m=1代入y=-(x-m)2+1化简可得抛物线的解析式为y=-x2+2x;
(2)存在.令y=0时得出(x-m)2=1得出A,B的坐标.令x=0时得出点C在原点下方得出OC=m2-1,求出m的实际值;
(3)已知抛物线y=-(x-m)2+1,根据m值的不同分情况解答.
解:
(1)当m=1时,抛物线的解析式为y=-x2+2x.
正确的结论有:
①抛物线的解析式为y=-x2+2x;
②开口向下;
③顶点为(1,1);④抛物线经过原点;
⑤与x轴另一个交点是(2,0);
⑥对称轴为x=1;等(3分)
说明:每正确写出一个得一分,最多不超过(3分).
(2)存在.
当y=0时,-(x-m)2+1=0,即有(x-m)2=1.
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0)(4分)
∵点B在原点右边
∴OB=m+1
∵当x=0时,y=1-m2,点C在原点下方
∴OC=m2-1.(5分)
当m2-1=m+1时,m2-m-2=0
∴m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
∴存在△BOC为等腰三角形的情形,此时m=2.(7分)
(3)如①对任意的m,抛物线y=-(x-m)2+1的顶点都在直线y=1上;
②对任意的m,抛物线y=-(x-m)2+1与x轴的两个交点间的距离是一个定值;
③对任意的m,抛物线y=-(x-m)2+1与x轴两个交点的横坐标之差的绝对值为2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询