设A是n阶矩阵,满足A^2-2A+E=O,则(A+2E)^(-1)=?
展开全部
小心!!答案不是 3^(-n)*E
【分析】(可用构造法、或待定系数法)
解这类题的基本思路是:首先构造出 (A+2E)(aA+bE) = E,只要两个矩阵的乘积为E,我们就可以说,矩阵(A+2E)可逆,且逆矩阵为(aA+bE)。(其中,a、b为常数)
************************************************************************************************
【解】(待定系数法)
假设(A+2E)可逆, 且有 (A+2E)(aA+bE) = E ,其中,a、b为常数
化简得, aA² + (2a+b)A + (2b-1)E = O
而,A² - 2A + E = O
待定系数法, 令 k*[A² - 2A + E] = O (k为任意常数)
解方程组
a = 1*k
2a+b = (-2)*k
2b-1 = 1*k
解得,a = k = -1/9,b= 4/9
即,(A+2E)*[ (-1/9)A + (4/9)E ] = E
综上所述, 矩阵(A+2E)可逆,且(A+2E)^-1 = (-1/9)A + (4/9)E
【分析】(可用构造法、或待定系数法)
解这类题的基本思路是:首先构造出 (A+2E)(aA+bE) = E,只要两个矩阵的乘积为E,我们就可以说,矩阵(A+2E)可逆,且逆矩阵为(aA+bE)。(其中,a、b为常数)
************************************************************************************************
【解】(待定系数法)
假设(A+2E)可逆, 且有 (A+2E)(aA+bE) = E ,其中,a、b为常数
化简得, aA² + (2a+b)A + (2b-1)E = O
而,A² - 2A + E = O
待定系数法, 令 k*[A² - 2A + E] = O (k为任意常数)
解方程组
a = 1*k
2a+b = (-2)*k
2b-1 = 1*k
解得,a = k = -1/9,b= 4/9
即,(A+2E)*[ (-1/9)A + (4/9)E ] = E
综上所述, 矩阵(A+2E)可逆,且(A+2E)^-1 = (-1/9)A + (4/9)E
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询