有理数包括正数、0和负数么

 我来答
首姗富察昊空
2019-04-27 · TA获得超过3646个赞
知道大有可为答主
回答量:3112
采纳率:26%
帮助的人:236万
展开全部
不对,应该改为“实数包括正数,0和负数”或者“有理数包括正有理数,0和负有理数”或者“有理数包括整数和分数”
解析:正数中有一些是无理数,负数中也有一些是无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
惠企百科
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

对的。原因如下:

数学上,有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

扩展资料

有理数运算定律

1、加法运算律:

1、加法交换律:两个数相加,交换加数的位置,和不变,即 。

2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。

 

 

2、减法运算律:

减法运算律:减去一个数,等于加上这个数的相反数。即:

 。

3、乘法运算律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。

2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。

3、乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即:

 

 

 。

参考资料:百度百科-有理数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式