f(x)=aeˣ-eᔿx+meᔿ ?
f'(x)=aeˣ-eᔿ
显然a≤0时 f'(x)<0→f(x)为减函数→最多1个零点→a>0
a>0 f'(x)=aeˣ-eᔿ=0
驻点x₀=lneᔿ-lna=ln(eᔿ/a)=m-lna
f''(x)=aeˣ>0→驻点为极小值点
lim(x→∞)f(x)=+∞→当极小值f(x₀)<0时,f(x)有两个零点
极小值f(x₀)=ae^[ln(eᔿ/a)]-eᔿ(m-lna)+meᔿ
=eᔿ-meᔿ+lna·eᔿ+meᔿ
=eᔿ(1+lna)
eᔿ恒大于0,故只需1+lna<0→a∈(0,1/e)