![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知抛物线y=ax²+bx+c经过点(-1,-1),对称轴为x=-2,在x轴上截得的线段长为 2√2,求其解析式。
3个回答
展开全部
解:∵抛物线y=ax²+bx+c对称轴为x=-2,在x轴上截得的线段长为 2√2,
∴它与X轴的交点坐标是(-2-√2)、(-2+√2);
设抛物线的解析式是y=a(x+2+√2)(x+2-√2)=a(x²+4x+2)
∵抛物线y=ax²+bx+c经过点(-1,-1),
∴a[(-1)²+4×(-1)+2]=-1
-a=-1
a=1
∴抛物线的解析式是y=x²+4x+2
∴它与X轴的交点坐标是(-2-√2)、(-2+√2);
设抛物线的解析式是y=a(x+2+√2)(x+2-√2)=a(x²+4x+2)
∵抛物线y=ax²+bx+c经过点(-1,-1),
∴a[(-1)²+4×(-1)+2]=-1
-a=-1
a=1
∴抛物线的解析式是y=x²+4x+2
展开全部
-b/2a=-2
x1-x2=2√2
(x1-x2)^2=8
韦达定理得
b/a=4,c/a=2
a-b+c=-1
得a=1,b=4,c=2
x1-x2=2√2
(x1-x2)^2=8
韦达定理得
b/a=4,c/a=2
a-b+c=-1
得a=1,b=4,c=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知抛物线y=ax05+bx+c的对称轴是x=2,且经过(1,4)和(5,0),则该a+b+c=4,25a+5b+c=0.解得:a=-1/2,b=2,c=5/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询