如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=4...
如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF....
如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
展开
1个回答
展开全部
证明:在CB的延长线上取点G,使BG=DE,连接AG
∵正方形ABCD
∴AB=AD,∠BAD=∠ABD=∠ABG=∠ADC=90
∵BG=DE
∴△ABG≌△ADE
(SAS)
∴AG=AE,∠BAG=∠DAE
∵∠EAF=45
∴∠BAF+∠DAE=90-∠EAF=45
∴∠GAF=∠BAF+∠BAG=∠BAF+∠DAE=45
∴∠GAF=∠EAF
∵AF=AF
∴△AGF≌△AEF
(SAS)
∴EF=GF
∵GF=BG+BF
∴GF=DE+BF
∴DE+BF=EF
∵正方形ABCD
∴AB=AD,∠BAD=∠ABD=∠ABG=∠ADC=90
∵BG=DE
∴△ABG≌△ADE
(SAS)
∴AG=AE,∠BAG=∠DAE
∵∠EAF=45
∴∠BAF+∠DAE=90-∠EAF=45
∴∠GAF=∠BAF+∠BAG=∠BAF+∠DAE=45
∴∠GAF=∠EAF
∵AF=AF
∴△AGF≌△AEF
(SAS)
∴EF=GF
∵GF=BG+BF
∴GF=DE+BF
∴DE+BF=EF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询