求∫1/2+sinx的不定积分
展开全部
万能代换:令y = tan(x/2),dx = 2dy/(1 + y²),sinx = 2y/(1 + y²)
∫ 1/(2 + sinx) dx
= ∫ [2/(1 + y²)]/[2 + 2y/(1 + y²)] dy
= ∫ 1/(y² + y + 1) dy
= ∫ 1/[(y + 1/2)² + 3/4] d(y + 1/2)
= (2/√3)arctan[(y + 1/2)(2√3)] + C
= (2/√3)arctan[(2y + 1)/√3] + C
= (2/√3)arctan[(2tan(x/2) + 1)/√3] + C
= (2/√3)arctan[(2/√3)tan(x/2) + 1/√3] + C
∫ 1/(2 + sinx) dx
= ∫ [2/(1 + y²)]/[2 + 2y/(1 + y²)] dy
= ∫ 1/(y² + y + 1) dy
= ∫ 1/[(y + 1/2)² + 3/4] d(y + 1/2)
= (2/√3)arctan[(y + 1/2)(2√3)] + C
= (2/√3)arctan[(2y + 1)/√3] + C
= (2/√3)arctan[(2tan(x/2) + 1)/√3] + C
= (2/√3)arctan[(2/√3)tan(x/2) + 1/√3] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询