设a,b∈R,求证:a²+b²+ab+1>a+b

 我来答
进祥杜心香
2020-03-31 · TA获得超过1235个赞
知道小有建树答主
回答量:1385
采纳率:93%
帮助的人:9.7万
展开全部
解法一:要证上式,只需证:
2(a2+b2+ab+1)>2(a+b)
移项得(a+b)2+(a-1)2+(b-1)2>0在a∈R,b∈R时恒成立.
解法二:要证上式,只需证:
a2+(b-1)a+b2-b+1>0
∵△=(b-1)2-4(b2-b+1)=-3b2+2b-3
∵△'=4-36=-32
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式