
3.19×10.34+3.19×5.33+15.67×6.81的式子怎么去计算?
6个回答
展开全部
3.19×10.34+3.19×5.33+15.67×6.81
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=(3.19+6.81)×15.67
=10×15.67
=156.7
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=(3.19+6.81)×15.67
=10×15.67
=156.7
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
展开全部
巧算3.19×10.34+3.19×5.33+15.67×6.81
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
3.19×10.34+3.19×5.33+15.67×6.81
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=(3.19+6.81)×15.67
=10×15.67
=156.7
扩展资料<竖式计算-计算过程>:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:0.19+0.81=0.0 向高位进1 小数部分加法计算
步骤二:3+6+1=0 向高位进1
根据以上计算步骤组合计算结果为10
存疑请追问,满意请采纳
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
3.19×10.34+3.19×5.33+15.67×6.81
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=(3.19+6.81)×15.67
=10×15.67
=156.7
扩展资料<竖式计算-计算过程>:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:0.19+0.81=0.0 向高位进1 小数部分加法计算
步骤二:3+6+1=0 向高位进1
根据以上计算步骤组合计算结果为10
存疑请追问,满意请采纳
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3.19×10.34+3.19×5.33+15.67×6.81=3.19×(10.34+5.33)+15.67×6.81=3.16×15.67+15.67×6.81=15.67×(3.16+6.81)=15.67×10=156.7重点是用乘法分配律进行简算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3.19×10.34+3.19×5.33+15.67×6.81
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=15.67×(3.19+6.81)
=15.67×10
=156.7
=3.19×(10.34+5.33)+15.67×6.81
=3.19×15.67+15.67×6.81
=15.67×(3.19+6.81)
=15.67×10
=156.7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=3.19*15.67+15.67*6.81=10*15.67=156.7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询