关于x的方程kx²+(k+2)x+k/4=0 有两个不相等的实数根.1...

关于x的方程kx²+(k+2)x+k/4=0有两个不相等的实数根.1,求k的取值范围2,是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若... 关于x的方程kx²+(k+2)x+k/4=0 有两个不相等的实数根. 1,求k的取值范围 2,是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由. 展开
 我来答
业庆母恬畅
2019-09-16 · TA获得超过3858个赞
知道大有可为答主
回答量:3046
采纳率:35%
帮助的人:267万
展开全部
【1】因为有两个不相等的实数根所以b²-4ac>0即(k+2)²-4k×k/4>0k²+2k+4-k²>02k>-4k>-2【2】因为两个实数根的倒数和为0这里用c、d分别表示X1
X2所以1/c
+
1/d=0即(c+d)/cd=0根据韦达定理-b/a
÷
c/a=0即-(k+2)/k
÷
k/4k=0-4(k+2)/k=0解得k=-2若有疑问可以百度Hi、
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式