数学七下数学全部概念
1个回答
展开全部
对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与其相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作“负”)号来表示。
为了表示具有相反的量,上面我们引进了-5、-2,像这样的数是一种新数,叫做负数(negative number)。过去学过的那些数(零除外)叫正数。
零既不是正数,也不是负数。
正整数、零和负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
画一条直线(通常画成水平),在这条直线上任取一点作为原点,用这点表示O。
像这样规定了原点、正方向和单位长度的直线叫做数轴。
我们发现,在数轴上表示的两个数,右边的数总比左边的数大。正数都大于零,负数都小于零,正数大于负数。
像这样只有符号不同的两个数称互为相反数。
零的相反数是零。
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数。
两个负数,绝对值大的反而小。
有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不便。
加法结合律;三个数相加,先把前两个相加,或者先把后两个相加,和不便。
减去一个数,等于加上这个数的相反数。这就是有理数减法法则。
把一个因数换成它的相反数,所得的积是原来的积的相反数。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
乘法交换律:两个数相乘,交换因数的位置,积不便。
乘法结合律:三个数相乘,先把前两个相乘,或者先把后两个数相乘,积不便。
几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为零,积就为零。
乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个相乘,再把积相加。
乘积是1的两个数互为倒数。
除以一个数等于乘以这个数的倒数。
零不能作除数。
有理数除法法则;两数相除,同号得正,异号的负,并把绝对值相除。
另除以任何一个不等于零的数,都得零。
这种求几个相同因数积的运算,叫做乘方,乘方的结果叫做幂。在an中a叫做底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂。
正数的任何次幂都是正数。
负数的奇次幂是负数,负数的偶次幂是正数。
这样一个大于10的数就记成a×10n的形式,其中a是整数数位只有一位的数。像这样的记数法叫做科学记数法。
1. 先算乘方,再算乘除,最后算加减;
2. 同级运算,按照从左至右的顺序进行;
3. 如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
从左边第一个不是零的数字起,到末位数字止,所有的数字都叫做这个数的有效数字。
用数值代替代数式里的字母,按照代数式中的运算公式计算得出的结果,叫做代数式的值。
由数与字母的乘积组成的代数式叫做单项式。
单项式的数字因数叫这个单项式的系数。
所有字母的指数的和叫做这个单项式的次数。
几个单项式的和叫多项式。
在多项式中,每个单项式叫做多项式的项。
不含字母的项,叫做常数项。
单项式与多项式统称整式。
把一个多项式各项的位置按照其中某一字母的指数由大(小)到小(大)顺序来排列,叫做这个多项式的降(升)幂排列。
所含字母相同,并且字母的指数也相等的项叫同类项。
把多项式中的同类项合并成一项,叫合并同类项。
合并同类项的法则可以概括为:把同类项的系数相加,其结果作为系数,其余保持不便。
去括号法则:括号前面是“+”号,把括号和加号去掉,括号里面各项都不便。括号前面是“-”号,去掉括号和“-”号,括号里面各项都改变符号。
添括号法则:添括号前面是“+”号,括号内的所有都不便符号。所添括号前面是“-”号时,括号内的都要改变符号。
整式加减一般步骤:1.如有括号,先去括号。2.如有同类项在合并同类项。
圆是由围成的封闭图形,其他由线段围成的图形叫做多边形。
两点之间,线段最短。
把线段的一端无限延伸所形成的图形,叫做射线。
把线段的两端无限延伸所形成的图形,叫做直线。
通过两点有一条直线,并且只能有一条直线。
角:是由两条由公共端点的射线组成的图形,也可看成是一条射线饶其端点旋转而形成的图形。射线的端点叫做角的顶点,起始位置的边叫做始边,终止位置的边叫做角的终边。
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这线叫做角平分线。
两个角的和等于90,就称这两个角互余。两个角的和等于180,就称这两个角互补。
对顶角相等。
在同一平面内,经过直线外或直线上一点,只有一条直线与已知直线垂直。
在同一平面内不相交的两条直线叫做平行线。
通过已知直线外一点,只有一条直线与已知直线平行。
同位角相当,两直线平行。内错角相当,两直线平行。两直线平行,同旁内角互补。
移项:从方程的一边移到另一边的变形。
一元一次方程:只含有一个未知数,并且含有未知数的式子是整式,未知数的次数是1的方程。
二元一次方程:每个方程都有两个未知数,并且未知数的次数是1。把这两个二元一次方程合在一起,就组成一个二元一次方程组。
一般地使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
通过“代入”消去一个未知数来解方程的解法,叫做代入消元法。通过加减消去一个未知数来解方程的解法,叫做加减消元法。
三角形外角的两条性质:1.三角形的一个外角等于与它不相邻的两个内角的和。2. 三角形的一个外角大于任何一个与它不相邻的内角。
三角形的外角和等于360。
三角形的任何两边的和大于第三边。
如果三角形的三条边都固定,则三角形的形状就确定了,这个性质叫做三角形的稳定性。
如果多边形的各边、内角都相等,就称它为正多边形。
如沿某条直线对折,对折的两部分完全重合,则称这图形为轴对称图形,这条直线叫这图形的对称轴。
如果两个图形沿某条直线对称,则这两个图形成轴对称,这条直线是对称轴,两个图形的对应点叫做对称点。
垂直并且平分一条线段的直线称为这线段的垂直平分线,或中垂线。
线段的垂直平分线上的点到这条限定的两个端点的距离相等。
如果一个图形关于某条直线对称,那么连结对称点的线段垂直平分线就是该图形的对称轴。
两条边相等的三角形叫等腰三角形。这两条边叫腰,其夹角叫做顶角。另一条边叫做底边,腰与底边的夹角叫做底角。等腰三角形的两个底角相等。
三条边都相等的三角形,叫做等边三角形。其各个内角都相等,均为60。
如果一个三角形有两个角相等,则这两个角所对应的边也相等。(等角对等边)
为了表示具有相反的量,上面我们引进了-5、-2,像这样的数是一种新数,叫做负数(negative number)。过去学过的那些数(零除外)叫正数。
零既不是正数,也不是负数。
正整数、零和负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
画一条直线(通常画成水平),在这条直线上任取一点作为原点,用这点表示O。
像这样规定了原点、正方向和单位长度的直线叫做数轴。
我们发现,在数轴上表示的两个数,右边的数总比左边的数大。正数都大于零,负数都小于零,正数大于负数。
像这样只有符号不同的两个数称互为相反数。
零的相反数是零。
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数。
两个负数,绝对值大的反而小。
有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不便。
加法结合律;三个数相加,先把前两个相加,或者先把后两个相加,和不便。
减去一个数,等于加上这个数的相反数。这就是有理数减法法则。
把一个因数换成它的相反数,所得的积是原来的积的相反数。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
乘法交换律:两个数相乘,交换因数的位置,积不便。
乘法结合律:三个数相乘,先把前两个相乘,或者先把后两个数相乘,积不便。
几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为零,积就为零。
乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个相乘,再把积相加。
乘积是1的两个数互为倒数。
除以一个数等于乘以这个数的倒数。
零不能作除数。
有理数除法法则;两数相除,同号得正,异号的负,并把绝对值相除。
另除以任何一个不等于零的数,都得零。
这种求几个相同因数积的运算,叫做乘方,乘方的结果叫做幂。在an中a叫做底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂。
正数的任何次幂都是正数。
负数的奇次幂是负数,负数的偶次幂是正数。
这样一个大于10的数就记成a×10n的形式,其中a是整数数位只有一位的数。像这样的记数法叫做科学记数法。
1. 先算乘方,再算乘除,最后算加减;
2. 同级运算,按照从左至右的顺序进行;
3. 如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
从左边第一个不是零的数字起,到末位数字止,所有的数字都叫做这个数的有效数字。
用数值代替代数式里的字母,按照代数式中的运算公式计算得出的结果,叫做代数式的值。
由数与字母的乘积组成的代数式叫做单项式。
单项式的数字因数叫这个单项式的系数。
所有字母的指数的和叫做这个单项式的次数。
几个单项式的和叫多项式。
在多项式中,每个单项式叫做多项式的项。
不含字母的项,叫做常数项。
单项式与多项式统称整式。
把一个多项式各项的位置按照其中某一字母的指数由大(小)到小(大)顺序来排列,叫做这个多项式的降(升)幂排列。
所含字母相同,并且字母的指数也相等的项叫同类项。
把多项式中的同类项合并成一项,叫合并同类项。
合并同类项的法则可以概括为:把同类项的系数相加,其结果作为系数,其余保持不便。
去括号法则:括号前面是“+”号,把括号和加号去掉,括号里面各项都不便。括号前面是“-”号,去掉括号和“-”号,括号里面各项都改变符号。
添括号法则:添括号前面是“+”号,括号内的所有都不便符号。所添括号前面是“-”号时,括号内的都要改变符号。
整式加减一般步骤:1.如有括号,先去括号。2.如有同类项在合并同类项。
圆是由围成的封闭图形,其他由线段围成的图形叫做多边形。
两点之间,线段最短。
把线段的一端无限延伸所形成的图形,叫做射线。
把线段的两端无限延伸所形成的图形,叫做直线。
通过两点有一条直线,并且只能有一条直线。
角:是由两条由公共端点的射线组成的图形,也可看成是一条射线饶其端点旋转而形成的图形。射线的端点叫做角的顶点,起始位置的边叫做始边,终止位置的边叫做角的终边。
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这线叫做角平分线。
两个角的和等于90,就称这两个角互余。两个角的和等于180,就称这两个角互补。
对顶角相等。
在同一平面内,经过直线外或直线上一点,只有一条直线与已知直线垂直。
在同一平面内不相交的两条直线叫做平行线。
通过已知直线外一点,只有一条直线与已知直线平行。
同位角相当,两直线平行。内错角相当,两直线平行。两直线平行,同旁内角互补。
移项:从方程的一边移到另一边的变形。
一元一次方程:只含有一个未知数,并且含有未知数的式子是整式,未知数的次数是1的方程。
二元一次方程:每个方程都有两个未知数,并且未知数的次数是1。把这两个二元一次方程合在一起,就组成一个二元一次方程组。
一般地使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
通过“代入”消去一个未知数来解方程的解法,叫做代入消元法。通过加减消去一个未知数来解方程的解法,叫做加减消元法。
三角形外角的两条性质:1.三角形的一个外角等于与它不相邻的两个内角的和。2. 三角形的一个外角大于任何一个与它不相邻的内角。
三角形的外角和等于360。
三角形的任何两边的和大于第三边。
如果三角形的三条边都固定,则三角形的形状就确定了,这个性质叫做三角形的稳定性。
如果多边形的各边、内角都相等,就称它为正多边形。
如沿某条直线对折,对折的两部分完全重合,则称这图形为轴对称图形,这条直线叫这图形的对称轴。
如果两个图形沿某条直线对称,则这两个图形成轴对称,这条直线是对称轴,两个图形的对应点叫做对称点。
垂直并且平分一条线段的直线称为这线段的垂直平分线,或中垂线。
线段的垂直平分线上的点到这条限定的两个端点的距离相等。
如果一个图形关于某条直线对称,那么连结对称点的线段垂直平分线就是该图形的对称轴。
两条边相等的三角形叫等腰三角形。这两条边叫腰,其夹角叫做顶角。另一条边叫做底边,腰与底边的夹角叫做底角。等腰三角形的两个底角相等。
三条边都相等的三角形,叫做等边三角形。其各个内角都相等,均为60。
如果一个三角形有两个角相等,则这两个角所对应的边也相等。(等角对等边)
追问
平面直角坐标系没有诶。我门老师要所有概念。
追答
不好意思,这是我以前的教科书上的,可能你们现在改版了,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |